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The starting point of my approach is the notion of variation through

solutions. In my monograph “The Action Principle and Partial Differ-

ential Equations”, which treats general systems of partial differential

equations arising from an action principle, I showed that such “first

order” variations are associated to a linearized Langangian, on the

basis of which energy currents are constructed. It is through energy

currents and their associated integral identities that the estimates,

essential to the approach, are derived. Here we consider the first

order variations which correspond to the one-parameter subgroups of

the Poincaré group, the isometry group of Minkowski spacetime, ex-

tended by the one-parameter scaling or dilation group, which leave the

surrounding constant state invariant. The higher order variations cor-

respond to the one-parameter groups of diffeomorphisms generated

by a set of vectorfields, the commutation fields.
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The construction of an energy current requires a multiplier vectorfield

which at each point belongs to the closure of the positive component

of the inner characteristic core in the tangent space at that point.

In the case of irrotational fluid mechanics the characteristic in the

tangent space at a point consists only of the sound cone at that point

and this requirement becomes the requirement that the multiplier

vectorfield be non-spacelike and future directed with respect to the

acoustical metric h.
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I use two multiplier vectorfields. The first multiplier field is the vec-

torfield K0:

K0 = (η−1
0 + α−1κ)L+ L, L = α−1κL+ 2T (1)

The second multiplier field is the vectorfield K1 defined by:

K1 = (ω/ν)L (2)

Here ν is the mean curvature of the wave fronts St,u relative to their

null normal L. However ν is defined not relative to the acoustical

metric hµν but rather relative to a conformally related metric h̃µν:

h̃µν = Ωhµν (3)
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It turns out that there is a choice of conformal factor Ω such that a

first order variation φ̇ of the wave function φ satisfies the linear wave

equation relative to the metric h̃µν:

�h̃φ̇ = 0 (4)

This choice defines Ω and the definition makes Ω the ratio of a

function of σ to the value of this function in the surrounding constant

state, thus Ω is equal to unity in the constant state. It turns out

moreover that Ω is bounded above and below by positive constants.

The function ω appearing in 3 is required to have linear growth in t

and to be such that �h̃ω is suitably bounded. To each variation ψ, of

any order, there are energy currents associated to ψ and to K0 and

K1 respectively.
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These currents define the energies Eu0[ψ](t), E ′u1 [ψ](t), and fluxes F t0[ψ](u),

F ′t1 [ψ](u). For given t and u the energies are integrals over the exterior

of the surface St,u in the hyperplane Σt, while the fluxes are integrals

over the part of the outgoing null hypersurface Cu between the hy-

perplanes Σ0 and Σt. It is these energy and flux integrals, together

with a spacetime integral K[ψ](t, u) associated to K1, to be discussed

below, which are used to control the solution.

Evidently, the means by which the solution is controlled depend on

the choice of the acoustical function u, the level sets of which are the

outgoing null hypersurfaces Cu. The function u is determined by its

restriction to the initial hyperplane Σ0.
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The divergence of the energy currents, which determines the growth

of the energies and fluxes, itself depends on (K0)π̃, in the case of the

energy current associated to K0, and (K1)π̃, in the case of the energy

current associated to K1. Here for any vectorfield X in spacetime, I

denote by (X)π̃ the Lie derivative of the conformal acoustical metric

h̃ with respect to X. I call (X)π̃ the deformation tensor corresponding

to X. In the case of higher order variations, the divergences of the

energy currents depend also on the (Y )π̃, for each of the commutation

fields Y to be discussed below.
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All these deformation tensors ultimately depend on the acoustical

function u, or, what is the same, on the geometry of the foliation

of spacetime by the outgoing null hypersurfaces Cu. Recall from the

previous lecture that the most important geometric property of this

foliation from the point of view of the study of shock formation is the

density of the packing of its leaves Cu. One measure of this density

is the inverse spatial density of the wave fronts, that is, the inverse

density of the foliation of each spatial hyperplane Σt by the surfaces

St,u. This is the function κ. Another measure is the inverse temporal

density of the wave fronts, the function µ.
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The two measures are related by:

µ = ακ (5)

where α is the inverse density, with respect to the acoustical metric,

of the foliation of spacetime by the hyperplanes Σt. The function

α is expressed directly in terms of the 1-form β = dφ. It turns out

moreover, that it is bounded above and below by positive constants.

Consequently µ and κ are equivalent measures of the density of the

packing of the leaves of the foliation of spacetime by the Cu.

Recall from the previous lecture that shock formation is characterized

by the blow up of this density or equivalently by the vanishing of κ or

µ.
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The other entity, besides κ or µ which describes the geometry of the

foliation by the Cu is the second fundamental form of the Cu. Since

the Cu are null hypersurfaces with respect to the acoustical metric h

their tangent hyperplane at a point is the set of all vectors at that

point which are h-orthogonal to the generator L, and L itself belongs

to the tangent hyperplane, being h-orthogonal to itself. Thus the

second fundamental form χ of Cu is intrinsic to Cu and in terms of

the metric h/ induced by the acoustical metric on the St,u sections of

Cu, it is given by:

L/Lh/ = 2χ (6)

where L/Xϑ for a covariant St,u tensorfield ϑ denotes the restriction of

LXϑ to TSt,u.
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The acoustical structure equations are:

The propagation equation for χ along the generators of Cu.

The Codazzi equation which expresses div/ χ, the divergence of χ in-
trinsic to St,u, in terms of d/trχ, the differential on St,u of trχ, and a
component of the acoustical curvature and of k, the second funda-
mental form of the Σt relative to h.

The Gauss equation which expresses the Gauss curvature of (St,u, h/)
in terms of χ and a component of the acoustical curvature and of k.

An equation which expresses L/Tχ in terms of the Hessian of the restric-
tion of µ to St,u and another component of the acoustical curvature
and of k.
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These acoustical structure equations seem at first sight to contain
terms which blow up as κ or µ tend to zero. The analysis of the
acoustical curvature then shows that the terms which blow up as κ
or µ tend to zero cancel.

The most important acoustical structure equation from the point of
view of the formation of shocks is the propagation equation for µ

along the generators of Cu:

Lµ = m+ µe (7)

where the function m given by:

m =
1

2
(βL)

2
(
dH

dσ

)
s
(Tσ) (8)

and the function e depends only on the derivatives of the βα, the
rectangular components of the 1-form β = dφ, tangential to the Cu.
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It is the function m which determines shock formation, when being

negative, causing µ to decrease to zero.

I first establish a theorem, the fundamental energy estimate, which

applies to a solution of the homogeneous wave equation in the acousti-

cal spacetime, in particular to any first order variation. The proof of

this theorem relies on certain bootstrap assumptions on the acoustical

entities. The most crucial of these assumptions concern the behavior

of the function µ.
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To give an idea of the nature of these assumptions, one of the as-

sumptions required to obtain the fundamental energy estimate up to

time s is:

µ−1(Tµ)+ ≤ Bs(t) : for all t ∈ [0, s] (9)

where Bs(t) is a function such that:∫ s

0
(1 + t)−2[1 + log(1 + t)]4Bs(t)dt ≤ C (10)

with C a constant independent of s. Here T is the vectorfield defined

above and we denote by f+ and f−, respectively the positive and

negative parts of an arbitrary function f .
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This assumption is then established by a certain proposition with Bs(t)

the following function:

Bs(t) = C
√
δ0

(1 + τ)
√
σ − τ

+ Cδ0(1 + τ) (11)

where τ = log(1+t), σ = log(1+s), and δ0 is a small positive constant

appearing in the final bootstrap assumption.

The spacetime integral K[ψ](t, u) mentioned above, is essentially the

integral of

−
1

2
(ω/ν)(Lµ)−|d/ψ|2

in the spacetime exterior to Cu and bounded by Σ0 and Σt.
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Another assumption states that there is a positive constant C inde-

pendent of s such that in the region below Σs where µ < η0/4 we

have:

Lµ ≤ −C−1(1 + t)−1[1 + log(1 + t)]−1 (12)

In view of this assumption, the integral

K[ψ](t, u) gives effective control of the derivatives of the variations

tangential to the wave fronts in the region where shocks are to form.

The same assumption, which is then established by a certain proposi-

tion, also plays an essential role in the study of the singular boundary.
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The final stage of the proof of of the fundamental energy estimate is

the analysis of system of integral inequalities in two variables t and u

satisfied by the five quantities Eu0[ψ](t), E ′u1 [ψ](t), F t0[ψ](u), F ′t1 [ψ](u),

and K[ψ](t, u).

After this, the commutation fields Y , which generate the higher order

variations, are defined. They are five: the vectorfield T which is

tranversal to the Cu, the field

Q = (1 + t)L along the generators of the Cu and the three rotation

fields Ri : i = 1,2,3 which are tangential to the St,u sections. The

latter are defined to be Π
◦
Ri : i = 1,2,3, where the

◦
Ri i = 1,2,3

are the generators of spatial rotations associated to the background

Minkowskian structure, while Π is the h-orthogonal projection to the

St,u.
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Expressions for the deformation tensors (T )π̃, (Q)π̃, and (Ri)π̃ :

i = 1,2,3 are then derived, which show that these depend on the

acoustical entities µ and χ.

The higher order variations satisfy inhomogeneous wave equations in

the acoustical spacetime, the source functions depending on the de-

formation tensors of the commutation fields. These source functions

give rise to error integrals, that is to spacetime integrals of contribu-

tions to the divergence of the energy currents.
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The expressions for the source functions and the associated error

integrals show that the error integrals corresponding to the energies

of the n+1st order variations contain the nth order derivatives of the

deformation tensors, which in turn contain the nth order derivatives

of χ and n+ 1st order derivatives of µ. Thus to achieve closure, we

must obtain estimates for the latter in terms of the energies of up

to the n+ 1st order variations. Now, the propagation equations for

χ and µ give appropriate expressions for L/Lχ and Lµ. However, if

these propagation equations, which may be thought of as ordinary

differential equations along the generators of the Cu, are integrated

with respect to t to obtain the acoustical entities χ and µ themselves,

and their spatial derivatives are then taken, a loss of one degree of

differentiability would result and closure would fail.
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I overcome this difficulty in the case of χ by considering the propa-

gation equation for µtrχ. I show that, by virtue of a wave equation

for σ, which follows from the wave equations satisfied by the first

variations corresponding to the spacetime translations, the principal

part on the right hand side of this propagation equation can be put

into the form −Lf̌ of a derivative of a function −f̌ with respect to L.

This function is then brought to the left hand side and we obtain a

propagation equation for µtrχ+ f̌ . In this equation χ̂, the trace-free

part of χ enters, but the propagation equation in question is consid-

ered in conjuction with the Codazzi equation, which constitutes an

elliptic system on each St,u for χ̂, given trχ. We thus have an ordinary

differential equation along the generators of Cu coupled to an elliptic

system on the St,u sections.
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More precisely, the propagation equation which is considered at the

same level as the Codazzi equation is a propagation equation for

the St,u 1-form µd/trχ + d/f̌ , which is a consequence of the equation

just discussed. To obtain estimates for the angular derivatives of χ

of order l we similarly consider a propagation equation for the St,u
1-form:

(i1...il)xl = µd/(Ril...Ri1trχ) + d/(Ril...Ri1f̌)
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In the case of µ the aforementioned difficulty is overcome by consid-

ering the propagation equation for µ4/ µ, where 4/ µ is the Laplacian

of the restriction of µ to the St,u. I show that by virtue of a wave

equation for Tσ, which is a consequence of the wave equation for σ,

the principal part on the right hand side of this propagation equation

can again be put into the form Lf̌ ′ of a derivative of a function f̌ ′

with respect to L. This function is then likewise brought to the left

hand side and we obtain a propagation equation for µ4/ µ− f̌ ′. In this

equation D̂/2µ, the trace-free part of the Hessian of the restriction

of µ to the St,u enters, but the propagation equation in question is

considered in conjuction with the elliptic equation on each St,u for µ,

which the specification of 4/ µ constitutes. Again we have an ordinary

differential equation along the generators of Cu coupled to an elliptic

equation on the St,u sections.
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To obtain estimates of the spatial derivatives of µ of order l + 2 of
which m are derivatives with respect to T we similarly consider a
propagation equation for the function:

(i1...il−m)x′m,l−m = µRil−m...Ri1(T )m4/ µ
−Ril−m...Ri1(T )mf̌ ′

This allows us to obtain estimates for the top order spatial derivatives
of µ of which at least two are angular derivatives. A remarkable fact is
that the missing top order spatial derivatives do not enter the source
functions, hence do not contribute to the error integrals.

The paradigm of an ordinary differential equation along the generators
of a null hypersurface coupled to an elliptic system on the sections of
the hypersurface was first encountered in my work with Sergiu Klain-
erman on the stability of Minkowski spacetime in general relativity.
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Here, the appearence of the factor of µ, which vanishes where shocks

originate, in front of

d/Ril...Ri1trχ and Ril−m...Ri1(T )m4/ µ

in the definitions of

(i1...il)xl and (i1...il−m)x′m,l−m

above, makes the analysis quite delicate. This is compounded with

the difficulty of the slow decay in time which the addition of the terms

−d/Ril...Ri1f̌ and Ril−m...Ri1(T )mf̌ ′ forces.

23



The analysis requires a precise description of the behavior of µ it-

self, given by certain propositions, and a separate treatment of the

condensation regions, where shocks are to form, from the rarefac-

tion regions, the terms refering not to the fluid density but rather

to the density of the stacking of the wave fronts. To overcome the

difficulties the following weight function is introduced:

µm,u(t) = min

{
µm,u(t)

η0
,1

}
, µm,u(t) = min

Σu
t

µ (13)

where Σu
t is the exterior of St,u in Σt, and the quantities Eu0[ψ](t),

E ′u1 [ψ](t), F t0[ψ](u), F ′t1 [ψ](u), and K[ψ](t, u) corresponding to the

highest order variations are weighted with a power, 2a, of this weight

function.
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The following lemma then plays a crucial role here as well as in the

proof of the main theorem where everything comes together. Let:

Mu(t) = maxΣu
t

{
−µ−1(Lµ)−

}
,

Ia,u =
∫ t
0 µ

−a
m,u(t

′)Mu(t′)dt′ (14)

Then under certain bootstrap assumptions in the past of Σs, for any

constant a ≥ 2, there is a positive constant C independent of s, u and

a such that for all t ∈ [0, s] we have:

Ia,u(t) ≤ Ca−1µ−am,u(t) (15)
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The acoustical assumptions on which the previous results depend are

established, using the method of continuity, on the basis of the final

bootstrap assumption, which consists only of pointwise estimates for

the variations up to certain order.

The analysis of the structure of the terms containing the top order

spatial derivatives of the acoustical entities shows that these terms

can be expressed in terms of the 1-forms (i1...il)xl and the func-

tions (i1...il−m)x′m,l−m. These contribute borderline error integrals,

the treatment of which is the main source of difficulties in the prob-

lem. The borderline integrals are all proportional to the constant `

mentioned above, hence are absent in the case ` = 0.
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I should make clear here that the only variations which are considered

up to this point are the variations arising from the first order variations

corresponding to the group of spacetime translations. In particular

the final bootstrap assumption involves only variations of this type,

and each of the five quantities Eu0,[n](t), F
t
0,[n](u), E

′u
1,[n](t), F

′t
1,[n](u),

and K[n](t, u), which together control the solution, is defined to be

the sum of the corresponding quantity Eu0[ψ](t), F t0[ψ](u), E ′u1 [ψ](t),

F ′t1 [ψ](u), and K[ψ](t, u), over all variations ψ of this type, up to order

n.
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To estimate the borderline integrals however, I introduce an additional

assumption which concerns the first order variations corresponding to

the scaling or dilation group and to the rotation group, and the second

order variations arising from these by applying the commutation field

T . This assumption is later established through energy estimates of

order 4 arising from these first order variations and derived on the basis

of the final bootstrap assumption, just before the recovery of the final

bootstrap assumption itself. It turns out that the borderline integrals

all contain the factor Tψα, where ψα : α = 0,1,2,3 are the first

variations corresponding to spacetime translations and the additional

assumption is used to obtain an estimate for supΣu
t

(
µ−1|Tψα|

)
in

terms of supΣu
t

(
µ−1|Lµ|

)
, which involves on the right the factor |`|−1.
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Upon substituting this estimate in the borderline integrals, the factors

involving ` cancel, and the integrals are estimated using the inequality

15. The above is an outline of the main steps in the estimation

of the borderline integrals associated to the vectorfield K0. The

estimation of the borderline integrals associated to the vectorfield

K1, is however still more delicate. In this case I first perform an

integration by parts on the outgoing null hypersurfaces Cu, obtaining

hypersurface integrals over Σu
t and Σu

0 and another spacetime volume

integral. In this integration by parts the terms, including those of

lower order, must be carefully chosen to obtain appropriate estimates,

because here the long time behavior, as well as the behavior as µ

tends to zero, is critical. Another integration by parts, this time on

the surfaces St,u, is then performed to reduce these integrals to a

form which can be estimated.
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The estimates of the hypersurface integrals over Σu
t are the most del-

icate (the hypersurface integrals over Σu
0 only involve the initial data)

and require separate treatment of the condensation and rarefaction

regions, in which the properties of the function µ, established by the

previous propositions, all come into play.

In proceeding to derive the energy estimates of top order, n = l+ 2,

the power 2a of the weight µm,u(t) is chosen suitably large to allow

us to transfer the terms contributed by the borderline integrals to

the left hand side of the inequalities resulting from the integral iden-

tities associated to the multiplier fields K0 and K1. The argument

then proceeds along the lines of that of the fundamental energy esti-

mate, but is more complex because here we are dealing with weighted

quantities.
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Once the top order energy estimates are established, I revisit the lower
order energy estimates using at each order the energy estimates of
the next order in estimating the error integrals contributed by the
highest spatial derivatives of the acoustical entities at that order. I
then establish a descent scheme, which yields, after finitely many
steps, estimates for the five quantities Eu0,[n](t), F t0,[n](u), E ′u1,[n](t),
F ′t1,[n](u), and K[n](t, u), for
n = l+1− [a], where [a] is the integral part of a, in which weights no
longer appear.

It is these unweighted estimates which are used to close the boot-
strap argument by recovering the final bootstrap assumption. This
is accomplished by the method of continuity through the use of the
isoperimetric inequality on the wave fronts St,u, and leads to the main
theorem.
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